July 11, 2023 Volume 19 Issue 26
 

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Far out: NASA awards 6 new innovative concepts for further study

Graphic depiction of silent, solid-state propulsion for advanced air mobility vehicles that use electroaerodynamic (EAD) thrusters, which produce a thrust force by accelerating ions across an electric field without moving parts. [Credits: Steven Barrett]

 

 

 

 

By Sarah Frazier, NASA Headquarters, Washington

Technology in development today could radically change the future of air and space exploration. Nearly silent electric aircraft could ferry people and packages around cities, a sprawling radio telescope array on the far side of the Moon could reveal new secrets about the universe, and astronauts on long-duration missions could grow their own medicines to protect their health.

These concepts are among six selected for continued study under the NASA Innovative Advanced Concepts (NIAC) program. The new round of Phase II awards funds six researchers to continue work on futuristic concepts designed to shape air and space travel decades in the future.

"NASA's story is one of barriers broken and technologies transformed to support our missions and benefit all of humanity," said NASA Administrator Bill Nelson. "The concepts selected under NASA's Innovative Advanced Concepts program will help empower researchers to usher in new technologies that could revolutionize exploration in the heavens and improve daily life here on Earth."

NIAC nurtures visionary ideas that could transform future NASA missions by funding early-stage technology concept studies. The Phase II awards continue work on concept studies initiated under Phase I NIAC awards. During Phase II, fellows continue to develop their concepts and explore potential infusion options within and beyond NASA.

"These new awards showcase the breadth of how NIAC-supported concepts can change exploration," said Jim Reuter, associate administrator for NASA's Space Technology Mission Directorate (STMD). "From revolutionary propulsion systems for deep-space missions to advances in aviation to change how we travel here on Earth, these technologies would radically expand our capabilities in air and space."

Each of the six fellows will receive up to $600,000 over two years to develop their concepts. The researchers selected to receive NIAC Phase II grants in 2023 are:

Darmindra Arumugam, NASA's Jet Propulsion Laboratory, Southern California:
Quantum Rydberg Radar for Surface, Topography, and Vegetation

This concept would use next-generation dynamically tunable quantum radar technology to improve remote sensing studies of Earth and other worlds, using reflected ground signals from other orbiting spacecraft to eliminate the need for large antenna deployments.

Steven Barrett, Massachusetts Institute of Technology, Cambridge, MA:
Silent, Solid-State Propulsion for Advanced Air Mobility Vehicles

This concept aims to develop nearly silent electroaerodynamic thrusters for vertical takeoff and landing aircraft that could be used to transport cargo and eventually passengers over short distances in urban areas.

Philip Lubin, University of California, Santa Barbara, CA:
PI - Planetary Defense

This concept could provide Earth with a rapid response capability to mitigate a disastrous impact from an asteroid or comet by pulverizing the object into pieces small enough to burn up in Earth's atmosphere.

Christopher Morrison, Ultra Safe Nuclear Corporation, Seattle, WA:
The Nyx Mission to Observe the Universe from Deep Space - Enabled by EmberCore, a High Specific Power Radioisotope Electric Propulsion System

This concept would use the nuclear decay of a radioactive material in a radioisotope electric propulsion system to propel a spacecraft to extremely high speeds, enabling the intercept and study of distant and fast-moving objects in the solar system on relatively short timeframes.

Graphic depiction of The Nyx Mission to Observe the Universe From Deep Space, which includes a multi-stage hybrid-radioisotope system used as an endurance stage for long-term operation and additional outer-solar-system maneuvering. [Credits: Christopher Morrison]

 

 

 

 

Ronald Polidan, Lunar Resources, Inc., Houston, TX:
FarView Observatory - A Large, In-Situ Manufactured, Lunar Far Side Radio Array

This concept would create a massive radio telescope array on the Moon's far side -- autonomously constructed using resources extracted from the Moon's regolith -- that could make unprecedented observations of the early universe.

Lynn Rothschild, NASA's Ames Research Center, Silicon Valley, CA:
A Flexible, Personalized, On-Demand Astropharmacy

This concept would use bacteria to create medical drugs on demand during extended spaceflight missions, including a class of drugs that could be used to treat radiation exposure or help protect astronauts' bone health in space.

Graphic depiction of a flexible, personalized, on-demand Astropharmacy. [Credits: Lynn Rothschild]

 

 

The NIAC program is funded by STMD, which develops new cross-cutting technologies and capabilities for NASA's current and future missions. Learn more about NIAC at: nasa.gov/niac.

Published July 2023

Rate this article

[Far out: NASA awards 6 new innovative concepts for further study]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2023 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy